decrypt101
SocialOpen ProjectsSupport me My Resumes
  • Preface
    • Motivation
    • Roadmap’s
  • Introduction to Blockchain
    • A Brief History
    • Growth of Blockchain
    • Structure of Blockchain
    • Types of Blockchain
    • Key Technologies of Blockchain
    • Features of Blockchain
    • How Blockchain Works ?
    • Implementation of Blockchain
    • Summary
  • Components of Blockchain Architecture
    • Distributed Ledger
    • Blocks
    • Transaction
    • Chain
    • Peer-to-Peer Network
    • Blockchain Layers
    • Off-Chain & On-Chain
    • Wallet
    • Mining
    • Tokens
    • Assets
    • State Channels
    • Sidechains
    • Oracles on Blockchain
    • Atomic Swaps
    • Decentralized Identity (DID)
    • Blockchain Data Storage
    • Interoperability
    • Data structures for Scaling Blockchain
    • Maximal Extractable Value (MEV)
  • Consensus Mechanisms
    • Proof of Work (PoW)
      • Implemation Using Rust
    • Proof of Stake (PoS)
    • Proof of Burn (PoB)
    • Proof of Capacity (PoC)
    • Proof of Activity (PoAc)
    • Proof of Weight (PoWe)
    • Proof of Luck (PoL)
    • Proof of Ownership (PoO)
    • Proof of Existence (PoE)
    • Proof of Believability (PoBe)
    • Proof of History (PoH)
    • Proof of Authority (PoA)
    • Proof of Elapsed Time (PoET)
  • Cryptographics
    • Encryption & Decryption
      • Symmetric Encryption
      • Asymmetric Encryption
      • Key Management and Exchange
      • Implementation
    • Cryptographic Hashing
      • Secure Hash Algorithms (SHA)
      • Message Digest Algorithms
      • Ethash
      • Blake2
      • SCrypt
      • RIPEMD-160
    • Digital Signature
      • Digital Signature Algorithms
      • Digital Signature in Blockchain
    • Zero-Knowledge Proofs (ZKPs)
      • Types of Zero-Knowledge Proof and Protocols
      • A Case Study of Polygon Platform
    • Multi-Party Computation (MPC)
    • Cryptanalysis
    • Practical Implementation
  • Decentralized Application (DApp)
    • Design and UX in Web3
  • Smart Contract
    • Development Tools
    • Solidity
    • Testing Smart Contract
    • Developing Smart Contract
    • Interacting & Deploying with Smart Contract
    • Verifying Smart Contracts
    • Upgrading Smart Contracts
    • Securing Smart Contract
    • Smart Contract Composability
    • Testnet and Mainnet
    • Blockchain Platform Using Smart Contract
    • Application of Smart Contract
    • Practical Implementation
  • Blockchain Platforms
    • Ethereum
      • Ethereum Virtual Machine (EVM)
      • ETHER and GAS
      • Ethereum transaction
      • Ethereum Accounts
      • Ethereum Stacking
      • Ethereum Network
      • Ethereum Scaling Solutions
      • Ethereum Use-Cases
      • Getting Started with Ethereum
      • Ethereum Ecosystem and Support
    • Solana
      • Solana Architecture
        • Solana Account Model
        • Solana Wallet
        • Transactions and Instructions
        • Solana Programs
        • Program Derived Address (PDA)
        • Cross Program Invocation (CPI)
        • Tokens on Solana
        • Clusters and Public RPC Endpoints
        • Transaction Confirmation & Expiration
        • Retrying Transactions
        • Versioned Transactions
        • Address Lookup Tables
        • State Compression
        • Actions and Blinks
      • Solana Developments
      • Solana Client
      • Advanced Solana
      • Solana Scaling and Performance Architecture
      • Solana Solutions and cases
      • Practical Implemenation
    • Binance Smart Chain (BSC)
      • Create a BEP20 Token
    • Hyperledger Fabric
    • Cosmos
    • Polkadot
    • Quorum
    • Polygon
    • Algorand
    • Corda
    • Avalanche
    • TRON
    • Summary
  • Decentralized Finance (DeFi)
    • DeFi Components
    • DeFi Protocols
    • DeFi Platforms
    • DeFi Risk Classification
      • Infrastructure-layer Attacks
      • Smart Contract Layer-attacks
      • Application Layer-attacks
      • DeFi Risks
    • DeFi and Blockchain
    • DeFi Impact
  • Decentralized Ecosystem and Digital Innovation
    • Layer 2 Scaling Fundamental
    • Tokenomics
    • Cryptocurrency
    • Quantative Trading
    • NFTs
    • GameFi
    • Metaverse
  • Blockchain as a Service (BaaS)
    • Building Fullstack Blockchain Platform
    • Decentralized Digital Identity
    • Build a Cryptocurrencies Exchange
    • Play-to-Earn Gaming
    • Solana Token Airdrop Manager
    • Smart Contract Development on Solana with Rust
    • Quantitative Trading Platform
    • Insurances protocols
    • Flash Loans
    • Asset Management
    • Tokenized Derivatives
    • Automated Market Makers (AMMs)
    • Staking
    • Lending and Borrowing Platforms
    • Yield Farming
    • Stablecoin System
    • Security Token Offerings (STOs)
    • Initial Coin Offerings (ICOs)
    • On-Chain Voting Systems
    • Decentralized Autonomous Organizations (DAOs)
    • NFT Marketplaces
    • Provenance Verification
    • Supply Chain Tracking
    • Commodities Tokenization
    • Real Estate Tokenization
    • Digital Certificates
    • KYC (Know Your Customer)
  • Blockchain Development Across Languages
    • Blockchain using Go(Golang)
    • Blockchain using Rust
    • Blockchain using Python
    • Blockchain using Cairo
  • Distributed Systems & Infrastructure Technology
    • Classification of Distributed Systems
    • Networked systems versus Distributed systems
    • Parallel systems vs Distributed systems
    • Distributed versus Decentralized systems
    • Processes of Distributed Systems
    • Architecture of Distributed systems
    • Infrastructure Technologies
  • Distributed System Patterns
    • Distributed Agreements Algorithms
      • HoneyBadgerBFT
    • Data Replications
    • Data Partition
    • Consistency
    • Distributed Time
    • Cluster Management
    • Communication between Nodes
    • Fault Tolerance and Resilience
      • How to design better fault tolerance systems
      • Resilience Patterns
    • Coordination systems
      • Clock synchronization
    • Security
      • Trust in distributed systems
      • Design of Principal Security
      • Security threats, policies, and mechanisms
      • Authentication and Authorizations
      • Cryptography
      • Monitoring in Security
  • Distributed System Design
    • Page 1
    • Distributed Shared Memory
    • Distributed Data Management
    • Distributed Knowledge Management
    • Distributed Ledger
  • FAQs
  • Support and Community
Powered by GitBook
On this page
  1. Distributed System Patterns

Data Replications

PreviousHoneyBadgerBFTNextData Partition

Last updated 7 months ago

Every Pattern code is here:

Data Replication refers to the process of copying and maintaining data across multiple nodes in a distributed system to ensure high availability, fault tolerance, and reliability. By replicating data, systems can continue to operate even if some nodes fail, as other nodes hold identical copies of the data. This is crucial for scalable systems, as it distributes the workload across multiple servers, improving read performance and ensuring that data remains accessible during outages or network partitions.

The benefits of data replication include:

  • Fault Tolerance: Ensures system resilience by allowing operations to continue even when some nodes fail.

  • Improved Availability: Guarantees that data remains accessible, minimizing downtime.

  • Load Balancing: Distributes requests across multiple nodes, reducing latency and preventing bottlenecks.

  • Disaster Recovery: Provides backup copies of data, ensuring recovery in case of data loss or corruption on specific nodes.

For scalable systems, data replication is vital to managing growing workloads and ensuring system performance as the network expands. It ensures that even with the increase in users or data, the system can handle operations smoothly without compromising speed or reliability.

In this section, I will cover various Data replication patterns by defining each problem and providing solutions implemented with Golang. The patterns include Write-Ahead Log (WAL), which ensures data durability by logging changes before applying them; Segmented Log, which breaks logs into manageable segments for better performance; Paxos and Raft, consensus algorithms that help distributed systems agree on shared states; Low-Water Mark and High-Water Mark, which track the minimum and maximum points of data replication progress; Leader Election, which ensures a single leader is chosen to coordinate actions among nodes; and Heartbeat, which verifies the liveliness of nodes. The Replicated Log pattern synchronizes logs across nodes to maintain consistency, while Quorum ensures a majority agreement in decisions. The Generation Clock helps manage versioning and conflicts in distributed environments. I’ll also cover patterns like Singular Update Queue, which serializes updates to avoid race conditions, Idempotent Receiver, which ensures that repeated messages don’t cause unintended actions, and Follower Reads, allowing followers to serve read requests. Lastly, the Versioned Value and Version Vector will be explained, which track different versions of data across distributed nodes. Each pattern will include practical examples and implementations in Golang, demonstrating how to solve distributed systems challenges effectively.

https://github.com/EncrypteDL