decrypt101
SocialOpen ProjectsSupport me My Resumes
  • Preface
    • Motivation
    • Roadmap’s
  • Introduction to Blockchain
    • A Brief History
    • Growth of Blockchain
    • Structure of Blockchain
    • Types of Blockchain
    • Key Technologies of Blockchain
    • Features of Blockchain
    • How Blockchain Works ?
    • Implementation of Blockchain
    • Summary
  • Components of Blockchain Architecture
    • Distributed Ledger
    • Blocks
    • Transaction
    • Chain
    • Peer-to-Peer Network
    • Blockchain Layers
    • Off-Chain & On-Chain
    • Wallet
    • Mining
    • Tokens
    • Assets
    • State Channels
    • Sidechains
    • Oracles on Blockchain
    • Atomic Swaps
    • Decentralized Identity (DID)
    • Blockchain Data Storage
    • Interoperability
    • Data structures for Scaling Blockchain
    • Maximal Extractable Value (MEV)
  • Consensus Mechanisms
    • Proof of Work (PoW)
      • Implemation Using Rust
    • Proof of Stake (PoS)
    • Proof of Burn (PoB)
    • Proof of Capacity (PoC)
    • Proof of Activity (PoAc)
    • Proof of Weight (PoWe)
    • Proof of Luck (PoL)
    • Proof of Ownership (PoO)
    • Proof of Existence (PoE)
    • Proof of Believability (PoBe)
    • Proof of History (PoH)
    • Proof of Authority (PoA)
    • Proof of Elapsed Time (PoET)
  • Cryptographics
    • Encryption & Decryption
      • Symmetric Encryption
      • Asymmetric Encryption
      • Key Management and Exchange
      • Implementation
    • Cryptographic Hashing
      • Secure Hash Algorithms (SHA)
      • Message Digest Algorithms
      • Ethash
      • Blake2
      • SCrypt
      • RIPEMD-160
    • Digital Signature
      • Digital Signature Algorithms
      • Digital Signature in Blockchain
    • Zero-Knowledge Proofs (ZKPs)
      • Types of Zero-Knowledge Proof and Protocols
      • A Case Study of Polygon Platform
    • Multi-Party Computation (MPC)
    • Cryptanalysis
    • Practical Implementation
  • Decentralized Application (DApp)
    • Design and UX in Web3
  • Smart Contract
    • Development Tools
    • Solidity
    • Testing Smart Contract
    • Developing Smart Contract
    • Interacting & Deploying with Smart Contract
    • Verifying Smart Contracts
    • Upgrading Smart Contracts
    • Securing Smart Contract
    • Smart Contract Composability
    • Testnet and Mainnet
    • Blockchain Platform Using Smart Contract
    • Application of Smart Contract
    • Practical Implementation
  • Blockchain Platforms
    • Ethereum
      • Ethereum Virtual Machine (EVM)
      • ETHER and GAS
      • Ethereum transaction
      • Ethereum Accounts
      • Ethereum Stacking
      • Ethereum Network
      • Ethereum Scaling Solutions
      • Ethereum Use-Cases
      • Getting Started with Ethereum
      • Ethereum Ecosystem and Support
    • Solana
      • Solana Architecture
        • Solana Account Model
        • Solana Wallet
        • Transactions and Instructions
        • Solana Programs
        • Program Derived Address (PDA)
        • Cross Program Invocation (CPI)
        • Tokens on Solana
        • Clusters and Public RPC Endpoints
        • Transaction Confirmation & Expiration
        • Retrying Transactions
        • Versioned Transactions
        • Address Lookup Tables
        • State Compression
        • Actions and Blinks
      • Solana Developments
      • Solana Client
      • Advanced Solana
      • Solana Scaling and Performance Architecture
      • Solana Solutions and cases
      • Practical Implemenation
    • Binance Smart Chain (BSC)
      • Create a BEP20 Token
    • Hyperledger Fabric
    • Cosmos
    • Polkadot
    • Quorum
    • Polygon
    • Algorand
    • Corda
    • Avalanche
    • TRON
    • Summary
  • Decentralized Finance (DeFi)
    • DeFi Components
    • DeFi Protocols
    • DeFi Platforms
    • DeFi Risk Classification
      • Infrastructure-layer Attacks
      • Smart Contract Layer-attacks
      • Application Layer-attacks
      • DeFi Risks
    • DeFi and Blockchain
    • DeFi Impact
  • Decentralized Ecosystem and Digital Innovation
    • Layer 2 Scaling Fundamental
    • Tokenomics
    • Cryptocurrency
    • Quantative Trading
    • NFTs
    • GameFi
    • Metaverse
  • Blockchain as a Service (BaaS)
    • Building Fullstack Blockchain Platform
    • Decentralized Digital Identity
    • Build a Cryptocurrencies Exchange
    • Play-to-Earn Gaming
    • Solana Token Airdrop Manager
    • Smart Contract Development on Solana with Rust
    • Quantitative Trading Platform
    • Insurances protocols
    • Flash Loans
    • Asset Management
    • Tokenized Derivatives
    • Automated Market Makers (AMMs)
    • Staking
    • Lending and Borrowing Platforms
    • Yield Farming
    • Stablecoin System
    • Security Token Offerings (STOs)
    • Initial Coin Offerings (ICOs)
    • On-Chain Voting Systems
    • Decentralized Autonomous Organizations (DAOs)
    • NFT Marketplaces
    • Provenance Verification
    • Supply Chain Tracking
    • Commodities Tokenization
    • Real Estate Tokenization
    • Digital Certificates
    • KYC (Know Your Customer)
  • Blockchain Development Across Languages
    • Blockchain using Go(Golang)
    • Blockchain using Rust
    • Blockchain using Python
    • Blockchain using Cairo
  • Distributed Systems & Infrastructure Technology
    • Classification of Distributed Systems
    • Networked systems versus Distributed systems
    • Parallel systems vs Distributed systems
    • Distributed versus Decentralized systems
    • Processes of Distributed Systems
    • Architecture of Distributed systems
    • Infrastructure Technologies
  • Distributed System Patterns
    • Distributed Agreements Algorithms
      • HoneyBadgerBFT
    • Data Replications
    • Data Partition
    • Consistency
    • Distributed Time
    • Cluster Management
    • Communication between Nodes
    • Fault Tolerance and Resilience
      • How to design better fault tolerance systems
      • Resilience Patterns
    • Coordination systems
      • Clock synchronization
    • Security
      • Trust in distributed systems
      • Design of Principal Security
      • Security threats, policies, and mechanisms
      • Authentication and Authorizations
      • Cryptography
      • Monitoring in Security
  • Distributed System Design
    • Page 1
    • Distributed Shared Memory
    • Distributed Data Management
    • Distributed Knowledge Management
    • Distributed Ledger
  • FAQs
  • Support and Community
Powered by GitBook
On this page
  1. Distributed Systems & Infrastructure Technology

Distributed versus Decentralized systems

PreviousParallel systems vs Distributed systemsNextProcesses of Distributed Systems

Last updated 7 months ago

When examining distributed and decentralized systems, the distinctions are often framed within the context of networked computer systems. As illustrated in Figure 1.1, each node represents a computer system, and each edge signifies a communication link between two nodes. The usefulness of such distinctions is subject to debate, especially as discussions about the pros and cons of each organizational structure unfold. For instance, centralized organizations are frequently criticized for poor scalability, while distributed organizations are praised for their resilience against failures. However, these assertions are not universally applicable.

Integrative and Expansive Views

Two perspectives can be adopted when considering how networked computer systems interconnect. The integrative view posits that there is a need to link existing computer systems, typically arising when services on one system need to be accessible to users or applications that weren’t originally contemplated. This is often seen in scenarios where financial services are integrated with project management systems or in scientific research, where expensive resources are pooled into a grid computer.

Conversely, the expansive view suggests that an existing system requires augmentation through additional computers. This perspective aligns more closely with the principles of distributed systems, emphasizing the need to expand capabilities by situating resources near where they are needed or enhancing reliability. For example, a service may need to be available for remote users through web interfaces or mobile applications.

These two perspectives help differentiate between decentralized and distributed systems:

  • Decentralized Systems: In these systems, processes and resources are inherently spread across multiple computers due to the need for integration or administrative boundaries. Examples include federated learning systems in AI, where training occurs closer to the data to comply with policies that restrict data movement. Additionally, decentralized systems like blockchain arise in contexts where trust among parties is limited, necessitating a public, verifiable record of transactions spread across multiple participants.

  • Distributed Systems: These systems, on the other hand, involve processes and resources that are sufficiently spread across multiple computers, primarily focusing on the need for scalability and fault tolerance. An example is Google Mail, where a vast network of servers enables users to send and receive emails seamlessly, ensuring high availability and minimal risk of data loss. Another instance is Content Delivery Networks (CDNs) like Akamai, which utilize numerous geographically dispersed servers to deliver content quickly and efficiently, optimizing performance based on user location and demand.

Conclusion:

The distinction between distributed and decentralized systems, though nuanced, highlights the varying motivations behind the organization of networked computer systems. While decentralized systems often arise from the necessity to integrate disparate resources, distributed systems prioritize scalability and reliability, expanding as user demands grow. Understanding these differences is crucial for designing systems that effectively meet specific operational needs and challenges.

The organization of a (a) centralized, (b) decentralized, and (c) distributed system, according to various popular sources. We take a different approach, as figures such as these are not that meaningful.